
Journal of Network Communications and Emerging Technologies (JNCET)

Volume 10, Issue 2, February (2020)

ISSN: 2395-5317 ©EverScience Publications 1

Intent-Based, Voice-Assisted, Self-Healing SDN

Framework

Mansi Jain 1, Shikha Suneja 2, Srinidhi Vajapeyam Srivatsa 3, Vaishali Ananthasubramanian 4, Yogisai Maramraj 5,

Levi Perigo 6, Rahil Gandotra 7, Dewang Gedia 8

 1, 2, 3, 4, 5, 7, 8 Interdisciplinary Telecom Program, University of Colorado Boulder.
6 Department of Computer Science, University of Colorado Boulder.

mansi.jain@colorado.edu 1, shikha.suneja@colorado.edu 2, s.vajapeyamsrivatsa@colorado.edu 3,

vaishali.ananthasubramanian@colorado.edu 4, yogisai.maramraj@colorado.edu 5, levi.perigo@colorado.edu 6,

rahil.gandotra@colorado.edu 7, dewang.gedia@colorado.edu 8

Published online: 29 February 2020

Abstract – The rise in cloud-based service offerings has increased

the scale and complexity of networks. Previous research indicates

that network management tasks using the command-line interface

(CLI) and primitive scripting do not scale, as they are

complicated, slow, and inefficient. In this research, a software-

defined networking (SDN) framework is developed to help solve

these problems. Using the intent-based, voice-assisted, self-healing

network framework, a proof of concept tool is developed which

can make these tasks simple, fast, and efficient by providing an

abstraction layer to the operator. The results of this research

indicate that, by leveraging the concepts of SDN, it is possible to

build a robust and scalable solution that provides the visibility and

control needed to effectively achieve network administration,

troubleshooting, and self-healing tasks by issuing verbal intents

through a digital voice-assistant.

Index Terms – Amazon Alexa, BGP, Intent-Based Networking,

Network Management, OpenFlow, Python, Quality of Service,

SDN, Self-Healing.

1. INTRODUCTION

As networks have grown in scale, it has become arduous for

network operators to make accurate decisions while managing

and troubleshooting networks [1]. While network automation

has eased the tasks of manual configuration, network operators

must still make network management decisions manually after

obtaining and analyzing information about the network.

Keeping business interests in mind, they must then make a

rational decision about how to manage the network under those

circumstances. As the network and application protocol stacks

have grown with additional layers of system virtualization, it

has also become harder for engineers to isolate network issues

in real-time, at a large scale [2, 26, 28, 29].

A network operator has to determine ‘what’ to do, ‘how’ to do

it, and ‘when’ to do it. However, it is not pragmatic to make

these decisions quickly on a large scale [3]. Using an intent-

based network (IBN) can simplify this process. The concept of

an intent is that the network operator only communicates

‘what’ needs to be done and the system will use its intelligence

to determine ‘how’ best to do it, by leveraging real-time

network information [4].

A major setback in designing intelligent networks is that

network devices only have a local perception of the network

state, which hinders their ability to effectively determine the

‘how’ and ‘when’ aspects of making networking decisions [5].

One of the concepts of software-defined networking (SDN) is

to treat the network as one entity instead of a set of individual

boxes because an SDN controller is a logically centralized

entity with an end-to-end view of the network [29, 6]. The

research presented in this paper proposes an intent-based

framework to delegate some tasks of the network administrator

to the SDN controller so they can be performed more

efficiently. For example, the SDN controller can be

programmed to collect and audit real-time network

information, and process this information to make a rational

decision, which is in purview of the intent framework set by

the network administrator. Since the tasks that were previously

performed by the network administrator have now been

delegated to software, it is possible to scale the system and

process a larger set of information faster. Utilizing this, the

network is administered through a set of software applications,

when the network administrator issues an intent to the system.

This makes it possible to use the concepts of DevOps to

perform network administration, network management, and

troubleshooting tasks more effectively, and in a structured and

consistent manner even across a large network [27, 7].

Furthermore, the framework provides a voice assistant to

facilitate the network administrator’s interaction with the

system and provides another layer of abstraction to the network

management and operations. The motivation behind this work

was to reduce the management and troubleshooting overheads

in large networks by developing a framework that abstracts and

automates the resolution steps. The remainder of the paper is

organized as follows: Section 2 reviews existing work and

briefs the novelty of our work, Section 3 describes the research

methodology including the environment and technologies

incorporated. Section IV provides the research results and

Journal of Network Communications and Emerging Technologies (JNCET)

Volume 10, Issue 2, February (2020)

ISSN: 2395-5317 ©EverScience Publications 2

analysis, and Section V concludes our research and addresses

the scope for future enhancements.

2. RELATED WORK

2.1. Voice assistants

As the popularity of the Internet of Things (IoT) has increased,

there has been a rise in devices that connect to wireless

networks and communicate over the Internet [8]. In addition,

many of these IoT devices include a voice service, known as

cloud-based intelligent virtual assistant (IVA) [9]. Milhorat et

al. [10] stated that the voice-based IVA fulfils the most

requested requirements of a personal assistant – simplicity,

flexibility and easiness of interaction - and with voice-based

IVAs, the input and output interfaces require less cognitive

function and attention from the users.

Rajalakshmi and Shahnasser [11] proposed a solution to

integrate IoT devices to voice-based IVAs and to control those

using Amazon Web Services (AWS) offerings like AWS IoT,

AWS Lambda, AWS EC2 and Alexa skill developer. They

used a Raspberry Pi along with plugins to configure networking

between all the devices in their simulation, and they were

successful in using the Raspberry Pi to control the devices by

issuing voice intents through Amazon Alexa. This research

demonstrated a method to control IoT devices through voice

commands and signified a paradigm shift of new technologies

moving towards a voice-based front-end.

2.2. Intent-based SDN

Chaudhari et al. [12] demonstrated a visually represented,

intent-based, voice-assisted networking system (VIVoNet).

They employed Amazon Echo as the voice assistant to convey

intents that configured the SDN-based infrastructure. Their

research proposed an IBN with a voice interface that could

abstract the underlying network infrastructure and allow the

administrators to alter its behavior by merely expressing their

intents via voice commands. VIVoNet implemented the

following intents:

 Least Latency: Configuration of a path with minimum

delay from source to destination.

 High Bandwidth: Configuration of a path with maximum

available bandwidth between source and destination.

 Least Hop Count: Configuration of the shortest path

between source and destination, based on a hop count

metric.

VIVoNet used a static topology file to reference all the network

devices that they used, and their work focused on developing

applications that could configure the network. When a user

intent was issued, the system would use the topology file as a

reference to push appropriate network configurations. Since a

static mapping of the network needed to be maintained in a

topology file, the implementation had scaling challenges.

The work in this paper builds on this idea to develop an SDN

framework equipped with a suite of applications that will

enable network administrators to deliver network

administration, network management and troubleshooting

tasks by simply issuing voice intents through a digital voice

assistant. In addition, the framework is developed to work with

a dynamic topology, thus adding flexibility, reliability and

scalability to our system.

2.3. Network monitoring with SDN

Fault detection and troubleshooting is an integral part of a

network administrator’s work. Therefore, there could be a

significant benefit in being able to perform these tasks in a fast

and error-free manner. Xie et al. [13] found that between 2007

and 2013, around 28 cloud providers amassed total losses of up

to U.S. $273 M and incurred a loss of 1,600 hours due to

disruptions caused by application and infrastructure failures.

Haque and Moyeen [14] defined the difference between

network faults and failures - failures are mostly link/node

failures and faults are mainly software bugs or hardware

malfunctions. However, their research overlooked a scenario

where multiple devices could generate multiple fault alarms,

causing inconsistencies and potential delays in network

convergence after a failure [15]. In addition, some types of

failures, such as operator errors and misconfigurations are

harder to detect and troubleshoot, because network

administrators are constrained to using ad-hoc tools. Even

though the distributed nature of traditional networks can

provide scalability and resiliency, it hampers the management

of complex network environments because of the larger scope

involved during troubleshooting [17].

Identifying the benefit of SDN over traditional networks, Atary

and Bremler-Barr [16] conducted an experiment to monitor all

links in a static topology that they created, called Granular RTT

Monitoring Infrastructure (GRAMI). They also detected the

round-trip path between any two switches in the network using

the concepts of SDN. They were able to accomplish this by

using the southbound protocol OpenFlow and installing two

new flows each time a request was made. While the research

was able to perform monitoring on an SDN with a high-level

of granularity, it was dependent on preconfigured proactive

flows on the switches added for monitoring.

The work in this paper proposes a scalable framework, which

can dynamically monitor network information across any

network, without introducing the complexity for the network

administrator to manually determine, add and manage

proactive flows.

2.4. Troubleshooting and self-healing

Even though the concepts of self-healing are extensively used

in other industries, self-healing in the field of networking is still

in its nascent phase and experimentation to use it extensively is

being administered by companies such as CenturyLink with

Journal of Network Communications and Emerging Technologies (JNCET)

Volume 10, Issue 2, February (2020)

ISSN: 2395-5317 ©EverScience Publications 3

SHNS platform [18], Facebook with their FBAR platform [19],

LinkedIn with Nurse platform [20], and Netflix with their

Winston tool [21]. A self-healing topology discovery (SHTP)

application was designed by Ochoa-Adal et al., which could

discover the network topology [22]. The application was able

to accomplish this without needing any static information such

as a preconfigured IP address. Instead, the research decoupled

static dependencies to increase resiliency of the network. The

research also added a self-healing feature, which kept the

network up by detecting and resolving port down status and

connectivity issues in network devices.

With the proposed work in this paper, the goal is to enhance the

body of knowledge to develop a consistent framework for

network troubleshooting. For example, a port down status

could indicate a healthy network state if that port was intended

to be down by the network administrator. Connectivity issues

relating to a network device is expected if the device is under

maintenance. This work, unlike previous research, does not

rely on primitive triggers such as port down or connectivity

down to flag network issues, but instead, it uses a Network

Source of Truth (NSoT) file as a reference for detecting and

flagging misconfigurations. The NSoT contains absolute truth

about the intended state of the network, which prevents the

proposed framework from reacting to false positives. The self-

healing application implemented in this research focuses on

automatically detecting and resolving network issues related to

OpenFlow and Border Gateway Protocol (BGP).

2.5. Research novelty

The previous research provides dispersed solutions for

configuring networks or performing network monitoring and

self-healing that are topology specific or only work on static

topologies with preconfigured flows. These solutions lack

structure and consistency, which make it hard to incorporate

them on dynamic or large network environments. There is

minimal research that provides a consistent and scalable

framework for performing the tasks of network administration,

network management, and troubleshooting programmatically

by issuing intents through a voice assistant.

The primary research question answered via this research was

can a framework be developed for performing network

administration and troubleshooting by issuing voice intents.

We identified and answered the following sub-problems to

effectively develop and evaluate the research.

a) Can voice intents be used to dynamically gather network

information?

b) Can network management tasks be performed by issuing

high-level voice intents?

c) Can network troubleshooting and self-healing be

performed by issuing high-level voice intents?

d) Can security policing be performed by issuing high-level

voice intents?

3. SYSTEM SETUP

The functional diagram of the proposed framework (see Figure

1) illustrates the components of the system. A Ryu SDN

controller is used to decouple control plane functionalities from

the SDN infrastructure [23]. The user interface of the

framework handles interaction between the user and the

system. It includes a voice assistant and a web graphical user

interface (GUI). The voice assistant processes the user intent as

an input and communicates the results back to the user. The

web-based GUI is used to render visual results such as

displaying the topology.

The SDN infrastructure consists of Open vSwitches (OvS)

which are interconnected to form a Clos network [24]. The

SDN infrastructure and the controller are virtualized using

VMware ESXi - enterprise-class, type-1 hypervisor. The

VMware vCenter client is used to manage the virtualized hosts.

The hypervisor is hosted on a Dell PowerEdge R420 server,

which consists of 12 core CPUs, 32 GB of RAM, and a local

storage of 400 GB. The Virtual Machine (VM) hosting the

SDN controller is allocated 4 GB of RAM and is loaded with

an Ubuntu 16.04 Operating System (OS). All other VMs

hosting OvS are allocated 2GB of RAM and loaded with an

Ubuntu 16.04 OS. The OvS version 2.0.2 Linux package is

installed on the VMs.

The SDN controller, interacts with the SDN infrastructure

using OpenFlow v1.3 as the southbound protocol. This

interaction can be read/write, wherein the controller can either

monitor network-related information or write hardware flows

into the forwarding plane of these devices. The network

administrator (user) interacts with the voice assistant to convey

an intent via voice input. The intent is processed by the voice-

assistant and if recognized, will trigger the corresponding

networking application to act. A set of Python-based network

applications run on the Ryu SDN controller, which perform the

tasks of network monitoring, network management, and

troubleshooting based on the intents that are provided.

In this research, the following applications are implemented

with the proposed framework to answer the sub-problems and

research question stated previously:

3.1. Topology Discovery

By issuing an intent, a network administrator can obtain real-

time network information. For example, if the intent is to

“visualize the topology,” the system gathers real-time topology

information and visualizes the complete network topology at

that instant, on a front-end GUI.

3.2. Quality of Service (QoS) Management:

Intents can be issued to configure and migrate QoS queue

resources based on network parameters such as packet drops or

link utilization. The network administrator could also have the

system continuously monitor network parameters and

Journal of Network Communications and Emerging Technologies (JNCET)

Volume 10, Issue 2, February (2020)

ISSN: 2395-5317 ©EverScience Publications 4

reconfigure QoS queue settings as appropriate, in real-time, to

counter congestion.

Figure 1 Functional Diagram

3.3. BGP Self-Healing

In a scenario where network connectivity is down, network

administrators can issue intents to detect network faults. In

addition, the system can be instructed to rectify any network

anomalies and rollback the network to a healthy state. With

self-healing, the system detects and corrects issues

automatically. For example: detecting a BGP neighbor down

state and correcting it.

3.4. SDN Security

By issuing a high-level network intent, the network

administrator can secure the entire SDN by applying a

centralized policy. For example, the network administrator can

issue an intent to flag a Denial of Service (DoS) attack beyond

a set threshold and take preemptive action to secure the

network.

Figure 2 User–Application Interaction

The input, processing, and output mechanism of these

applications are described in Figure 2. When a user intent is

provided as an input, the Python-based applications are called

to perform one or more tasks in response to the intent. Upon

performing these tasks, the applications provide a response

back to the user.

4. RESULTS AND ANALYSIS

The functional diagram of the proposed framework (see Figure

1) illustrates the components. By developing the following

applications and testing them, the researchers attempted to find

answers to the three sub-problems and the research question

stated previously.

The framework uses Amazon’s Alexa skill developer service

for developing a voice interface where network administrators

can issue intents to perform networking tasks. To accomplish

this, a Python3 development environment was setup and Ngrok

and Flask-ask packages were used along with the Alexa skill

developer to process voice intents. Custom skills are added on

the Alexa skill developer application to recognize specific

intents related to this research. These custom skills are hosted

on a public HTTPS endpoint provided by Ngrok.

When Alexa receives a voice command, it is processed at this

endpoint and matched with the database of all skills defined in

the Alexa skill developer module. If this command is

recognized to belong to an intent implemented by the

framework, one or more specific actions are taken accordingly

as discussed in the following section.

4.1 Can Network Information be Gathered Dynamically by

Issuing High-Level Voice Intents?

When the user says to Alexa: “Visualize the topology,” the

voice command is received and processed by the HTTPS

endpoint, where it compares the voice command with a wide

range of intents defined in the Alexa skill developer module. In

this case, the voice command is recognized to belong to an

intent defined in our framework, which is to gather and

visualize topology information, and therefore it invokes the

Topology Discovery application to take the following set of

actions, as explained below.

When the Topology Discovery application is invoked, it

discovers network connections and link status information in

real-time. This information is stored in a database as shown in

Figure 3. Furthermore, the application dynamically tracks the

network, based on OpenFlow messages and updates the

topology information whenever there is a change in the

network. The Ryu topology API is leveraged to collect this

information on an event basis. The following OpenFlow events

will trigger a change in topology information:

 Switch Enter: This event is triggered when a switch

successfully establishes an OpenFlow session with the

SDN controller. The switch is then assumed to ‘enter’ the

topology.

 Switch Leave: This event is triggered when a switch tears

down an existing OpenFlow session with the SDN

Journal of Network Communications and Emerging Technologies (JNCET)

Volume 10, Issue 2, February (2020)

ISSN: 2395-5317 ©EverScience Publications 5

controller. The switch is then assumed to ‘exit’ the

topology.

 Port Modified: This event is triggered whenever there is a

change in the status of an OpenFlow port on a switch.

The information from the topology database was also used to

render the user with a visual representation of the topology as

shown in Figure 4 and Figure 5, for different test cases. Based

on the results, the following observations are made relating to

the development of the Topology Discovery application using

the framework, which answer this sub problem:

Figure 3 Link Information in Topology

i. It is possible to dynamically obtain an end-to-end view of

the network by issuing a voice intent. This provides a high-

level of abstraction and is different from previous research

work where the network administrator needed to either

preconfigure flows or maintain a static topology file to

perform similar tasks.

ii. Similar applications can be developed using the proposed

framework to collect miscellaneous information using

OpenFlow messages in real-time. For example, by

collecting information of available link bandwidth, it is

possible to determine the best path between any two

endpoints in the network at that instant. Since the

information collection is dynamic and not dependent on

any specific topology, the proposed framework provides a

consistent and scalable methodology to collect

information in a network where network devices support

OpenFlow v1.3.

4.2 Can Network Management Tasks be Performed by Issuing

High-Level Voice Intents?

By implementing the QoS Management application, an attempt

is made to identify if network management tasks can be

performed by issuing voice intents. The goal of the QoS

Management application is to achieve better utilization of

network resources by dynamically adjusting the bandwidth

window for every queue that is configured. This is done by

continuously tracking queue-specific information such as the

volume of traffic and the number of packets dropped for traffic

matching that specific queue.

The network administrator can issue intents to configure and

manage these queues. A user intent can be issued to pre-set a

threshold value of packet drops after which the bandwidth

window must be adjusted and the increment/decrement value

of bandwidth. For example, if a threshold of 0.6% is set with

an increment/decrement factor of 2 Mbps, whenever the

percentage of packet drops/transmission errors (TX_ERRORS)

per queue exceed 0.6, the bandwidth window of that queue is

re-adjusted to increase the bandwidth allocation by 2 Mbps for

that queue. In developing the QoS Management application,

the following Ryu SDN controller applications were used to

complement the application: rest_qos, simple_switch_13,

rest_conf_switch and ofctl_rest. To register flows related to

configured queues, the simple_switch_13 application had to be

modified to add a flow entry with an OpenFlow Go-To action.

Figure 4 GUI Output of Healthy State

The QoS Management application was tested in a network with

preconfigured queues configured to match protocol-specific

traffic. There were two queues configured, one that would

match Transmission Control Protocol (TCP) traffic and another

that would match User Datagram Protocol (UDP) traffic. The

testing of the QoS Management application was administered

in the following stages:

i. Ability to accept user input: The QoS Management

application runs continuously in the background.

However, at any point, the user must be able to issue

intents to configure queue management settings such as

setting threshold of packet drops and increment/decrement

value of bandwidth as discussed before.

ii. Simulation of access traffic: Using iPerf, simulation of

access traffic was verified to check if traffic could be

generated with bandwidth attribute for UDP and window

size for TCP to carry out further test cases.

Journal of Network Communications and Emerging Technologies (JNCET)

Volume 10, Issue 2, February (2020)

ISSN: 2395-5317 ©EverScience Publications 6

iii. Monitoring packet drops: The application was tested to

verify that it could detect packet drops on specific queues

in real-time, by monitoring OpenFlow messages.

iv. Dynamic reconfiguration of queue resources: Test cases

were devised to verify when packet drops for a queue

exceeded a threshold, the application would reconfigure

queue resources by increasing the bandwidth allocated to

that queue. REST calls were made to retrieve queue

statistics before and after triggering packet drops to exceed

the set threshold.

Figure 5 GUI Output of Link Down

Based on the results, the following observations are made

relating to the development of the QoS Management

application using the proposed framework, which answer this

sub problem:

i. Many tasks of network management are cumbersome and

time consuming, especially in large and complicated

networks. By implementing QoS Management within our

framework, the ease of using voice intents to configure and

manage QoS queue settings is illustrated.

ii. Similar applications can be developed using the proposed

framework to perform various network management tasks

by providing a high level of user abstraction.

4.3 Can network troubleshooting and self-healing be

performed by issuing high-level voice intents?

By implementing the BGP Self-healing application, an attempt

is made to identify if network troubleshooting and self-healing

can be performed by issuing voice intents. By leveraging the

framework developed, the application will enable building a

self-reliant system that can detect network faults and resolve

them as per the intent of the network administrator. With the

BGP Self-healing application, the focus is to detect, and correct

network issues related to OpenFlow and BGP configuration, to

achieve end-to-end connectivity between two hosts across the

network. We can largely classify the application to consist of

the following two features:

i. Event/Fault-Detection:

Upon issuing an intent to “detect network issues” or “detect and

resolve network issues,” the application gathers the current

network state and configuration information. It will compare

current configuration with the expected or last working

configuration referenced in the NSoT file. The application will

then flag any misconfigurations and/or unexpected network

states.

In testing, several combinations of test cases were run by

injecting errors in the OpenFlow and BGP configuration, such

as misconfiguration of controller IP, OpenFlow version, BGP

peer IP, and remote AS number. In each case, upon issuing a

verbal intent to “detect network issues,” the application was

able to detect and validate misconfigurations present on

network devices by comparing it with the NSoT file. The

detected errors were logged into a file and reported back to the

user through the digital assistant.

ii. Fault-Resolution/Self-healing:

Upon detecting misconfigurations and/or unexpected network

states when compared with the NSoT file, the system will

initiate a rollback to the last working configuration using the

NSoT file as the reference. The hook for this application can

either be an explicit intent issued by the network administrator

to resolve specific network issues identified previously using

the detection application. Alternatively, the hook can be a pre-

set intent to the system to “continuously detect and resolve

network issues,” which would correspond to the self-healing

feature set of this framework.

In testing, several combinations of test cases were run by

injecting errors in the OpenFlow and BGP configuration, such

as misconfiguration of controller IP, OpenFlow version, BGP

peer IP, and remote AS number. With these misconfigurations

in place, the end hosts did not have reachability to each other,

because the switches did not have an active OpenFlow

connection with the controller and the BGP session was

inactive. A verbal intent was issued to “detect and resolve

network issues” upon which the system was able to identify

misconfigurations and rollback the configuration to be

consistent with the NSoT file. At this point, the end hosts were

able to reach each other owing to active OpenFlow and BGP

sessions that were reestablished.

Based on the results, the following observation was made

relating to the development of the BGP Self-healing

application using the proposed framework, which answer this

sub problem:

i. It is possible to perform troubleshooting and self-healing in

a network by issuing high-level voice intents. The

application is able to detect and correct network issues

Journal of Network Communications and Emerging Technologies (JNCET)

Volume 10, Issue 2, February (2020)

ISSN: 2395-5317 ©EverScience Publications 7

dynamically when a network administrator issues an intent

to “detect and resolve network issues.” In cases where the

application fails to self-heal, it will log issues detected and

steps taken by the system in its attempt to resolve network

issues. The network administrator can refer to the log report

and then continue troubleshooting larger issues. Therefore,

even when self-healing does not resolve the issue, it will

save time by eliminating the need for the network

administrator to manually carry out each step of

troubleshooting.

4.4 Can security policing be performed by issuing high-level

voice intents?

By implementing the SDN Security application, an attempt is

made to determine if security policing in a network can be

performed by issuing voice intents. The concepts of SDN

allows for implementing centrally enforceable security

policies. However, it also exposes additional attack vectors,

which could aim to take down the SDN controller by carrying

out a control plane DoS attack. As part of this research, a

Python-based application was developed to detect and mitigate

variations of DoS attacks on the SDN controller at run-time.

The implementation involves monitoring the incoming traffic

(OpenFlow PACKET_IN messages) on the SDN controller and

alarming an attack if the number of PACKET_IN messages

reaches a set threshold (for instance, 100 packets). The attack

is then mitigated by adding security rules to block malicious

traffic from the identified attacker. The network administrator

can set this threshold and alter it at any time by simply issuing

a voice intent to Alexa.

Testing was administered in the following steps:

i. Ability to accept intents: The SDN Security application

runs continuously in the background. However, at any

point the user must be able to issue intents to enforce

security policing. For example, the security policy may

involve the user setting a threshold for number of

PACKET_IN messages within a period of time beyond

which it should be considered as a DoS attack. The user

may enforce these policies at any time. For instance, after

noticing certain traffic patterns, the network administrator

may change these settings by issuing a voice intent.

ii. Ability to detect attacks and act: A DoS attack was

simulated by generating a large number of PACKET_IN

messages sent to the controller. The SDN Security

application was able to detect an attack upon reaching the

threshold value of PACKET_IN messages. The

application then successfully took preemptive action to

block and log further PACKET_IN messages originating

from the IP address of the attacker. This was verified by

checking traffic on the wire and verifying packet drops

logged in the iptables rule that was added. After exceeding

the threshold, all PACKET_IN messages originating from

the IP address of the attacker were dropped.

Based on the results, the following observation was made

relating to the development of the SDN Security application

using the proposed framework, which answers this sub

problem:

i. Using the framework developed to implement security in

an SDN, the ease of using voice intents to enforce security

policies was illustrated.

5. CONCLUSION

Previous work provided dispersed solutions, which lacked a

consistent and structured approach to programmatically

perform tasks of network administration, network management

and troubleshooting. Notably, this made performing these tasks

harder and time consuming for network administrators.

Previous solutions only worked on static network

environments, which introduced scalability challenges.

This research introduces a robust, intent-based framework for

performing tasks of network administration, network

management and troubleshooting in SDN by issuing voice

intents. A suite of SDN applications were developed using the

proposed framework as proof of concepts to illustrate the

inherent advantages by using this framework. It was found that

applications built are easy to use and provide a high level of

abstraction for the user. In addition, the proposed framework

makes it possible to develop applications that work

dynamically with any network environment, provided the

network devices support OpenFlow v1.3. This adds flexibility,

reliability, and scalability into the system.

5.1. Future Work

This research presented a proof of concept for developing

applications using the Intent-based, Voice-assisted, Self-

healing SDN framework. The framework provided a consistent

methodology to develop applications, which could perform

tasks of a network administrator based on voice intents. The

following are some additional feature sets that could be

included:

 Incorporating the concepts of machine learning to more

efficiently perform tasks of network troubleshooting, self-

healing, and security policing.

 Incorporating Proactive APIs for Alexa where the voice-

assistant can provide unsolicited insights to the network

administrator that could help optimize network

administration and network management.

REFERENCES

[1] Internet World Stats. World Internet Users Statistics and 2019 World

Population Stats. Retrieved September 23, 2019 from

https://www.internetworldstats.com/stats.htm
[2] CA Technologies. 2018. The Critical Guide to Modern Network

Monitoring. https://www.ca.com/content/dam/ca/us/files/ebook/the-

critical-guide-to-modern-network-monitoring.pdf.

Journal of Network Communications and Emerging Technologies (JNCET)

Volume 10, Issue 2, February (2020)

ISSN: 2395-5317 ©EverScience Publications 8

[3] W. C. Goers and M. R. Brenner, “Implementing a Management System

Architecture Framework.” Bell Labs Technical Journal, vol. 5, no. 4, pp.
31–43, 2002.

[4] T. Szyrkowiec et al., “Automatic Intent-Based Secure Service Creation

Through a Multilayer SDN Network Orchestration,” Journal of Optical
Communications and Networking, vol. 10, no. 4, 2018.

[5] T. Keary. 2018. What is Software Defined Networking (SDN) and why

is it important? Retrieved September 23, 2019 from
https://www.comparitech.com/net-admin/software-defined-networking/.

[6] K. Raghunath and P. Krishnan, “Towards A Secure SDN Architecture,”

9th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), 2018.

[7] E. Madison. 2017. NetDevOps: what does it even mean? (October 2017).

https://cumulusnetworks.com/blog/netdevops-meaning.
[8] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet: The

Internet of Things Architecture, Possible Applications and Key

Challenges,” 10th International Conference on Frontiers of Information
Technology, 2012.

[9] H. Chung, J. Park, and S. Lee, “Digital forensic approaches for Amazon

Alexa ecosystem,” Digital Investigation, vol. 22, 2017.
[10] P. Milhorat, S. Schlogl, G. Chollet, J. Boudy, A. Esposito, and G. Pelosi,

“Building the next generation of personal digital Assistants,” 1st
International Conference on Advanced Technologies for Signal and

Image Processing (ATSIP), 2014.

[11] A. Rajalakshmi and H. Shahnasser, “Internet of Things using Node-Red
and alexa,” 17th International Symposium on Communications and

Information Technologies (ISCIT), 2017.

[12] A. Chaudhari et al., “VIVoNet: Visually-Represented, Intent-Based,
Voice-Assisted Networking,” International Journal of Computer

Networks & Communications (IJCNC), vol. 11, no. 2, Mar. 2019.

[13] J. Xie et al., “A Survey of Machine Learning Techniques Applied to
Software Defined Networking (SDN): Research Issues and Challenges,”

IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 393-430,

2019.
[14] A. I. Haque and M.A. Moyeen, “Revive: A Reliable Software Defined

Data Plane Failure Recovery Scheme,” Network and Service

Management (CNSM) 14th International Conference, pp. 268–274, 2018.

[15] Y.-Z. Liao and S.-C. Tsai, “Fast Failover with Hierarchical Disjoint Paths

in SDN,” IEEE Global Communications Conference (GLOBECOM),

2018.
[16] A. Atary and A. Bremler-Barr, “Efficient Round-Trip Time monitoring

in OpenFlow networks,” IEEE INFOCOM 2016 - The 35th Annual IEEE

International Conference on Computer Communications, 2016.
[17] J. Sargent. 2018. SDN makes troubleshooting network issues painful.

Retrieved September 25, 2019 from

http://www.itopstimes.com/itops/sdn-makes-troubleshooting-network-
issues-painful/.

[18] CenturyLink. 2017. Self-healing Network Service (SHNS). Retrieved

September 25, 2019 from
http://www.centurylink.com/wholesale/pcat/selfhealingntwksvcs.html.

[19] Facebook. 2011. Making Facebook Self-Healing. Retrieved September

25, 2019 from https://www.facebook.com/notes/facebook-
engineering/making-facebook-self-healing/10150275248698920.

[20] B.C. Sherwin. 2015. Introducing Nurse: Auto-Remediation at LinkedIn.

Retrieved September 25, 2019 from

https://engineering.linkedin.com/sre/introducing-nurse-auto-

remediation-linkedin.

[21] Netflix. 2016. Introducing Winston — Event driven Diagnostic and
Remediation Platform. Retrieved September 25, 2019 from

https://medium.com/netflix-techblog/introducing-winston-event-driven-

diagnostic-and-remediation-platform-46ce39aa81cc.
[22] L. Ochoa-Aday, C. Cervello-Pastor, and A. Fernandez-Fernandez, “Self-

Healing Topology Discovery Protocol for Software-Defined Networks,”

IEEE Communications Letters, vol. 22, no. 5, pp. 1070-1073, 2018.
[23] Ryu. Build SDN Agilely. Retrieved September 26, 2019 from

https://osrg.github.io/ryu/.

[24] Open vSwitch. Retrieved September 26, 2019 from
https://docs.openvswitch.org/.

[25] R. Gandotra and L. Perigo. "SDNMA: A Software-Defined, Dynamic

Network Manipulation Application to Enhance BGP Functionality,"
2018 IEEE 20th International Conference on High Performance

Computing and Communications; IEEE 16th International Conference on

Smart City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), pp. 1007-1014, Jun. 2018.

[26] D. Gedia and L. Perigo, ‘A Centralized Network Management

Application for Academia and Small Business Networks,’ Information
Technology in Industry Journal, vol. 6, no. 3, pp.1 – 10, 2018.

[27] D. Gedia and L. Perigo, ‘Performance Evaluation of SDN-VNF in Virtual

Machine and Container’ in IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), pp. 1-7,

2018.

[28] D. Gedia and L. Perigo, ‘Latency-Aware, Static, and Dynamic Decision-
Tree Placement Algorithm for Containerized SDN-VNF in OpenFlow

Architectures’ in IEEE Conference on Network Function Virtualization

and Software Defined Networks (NFV-SDN), Dallas, USA, 2019.
[29] A. Jain et al., “Trend-Based Networking Driven by Big Data Telemetry

for SDN and Traditional Networks,” International Journal of Next-

Generation Networks (IJNGN), vol. 11, no. 1, 2019.

Authors

Mansi Jain is a graduate student from the
University of Colorado Boulder with a major in

Network Engineering. She received her Bachelor of

Engineering in Electrical and Electronics
Engineering, and currently works as a Network

Engineer at Facebook.

Shikha Suneja is a graduate student from the

University of Colorado Boulder with a major in
Network Engineering. She received her Bachelor of

Engineering in Electrical and Electronics

Engineering, master’s degree in Mathematics, and

currently works as a Production Engineer at

Facebook.

Srinidhi Vajapeyam Srivatsa is a graduate

student from the University of Colorado Boulder

with a major in Network Engineering. He received
his Bachelor of Engineering in

Telecommunications Engineering, and currently

works as an Associate Systems Engineer at Juniper
Networks.

Vaishali Ananthasubramanian is a graduate
student from the University of Colorado Boulder

with a major in Network Engineering. She received

her Bachelor of Engineering in Electrical,

Electronics and Communications Engineering, and

currently works as a Rotational Production

Network Engineer at Facebook.

Yogisai Maramraj is a graduate student from the

University of Colorado Boulder with a major in
Network Engineering. He received his Bachelor of

Technology in Electrical, Electronics and

Communications Engineering, and currently works
as a Systems Development Engineer at Amazon

Web Services.

Journal of Network Communications and Emerging Technologies (JNCET)

Volume 10, Issue 2, February (2020)

ISSN: 2395-5317 ©EverScience Publications 9

Dr. Levi Perigo is a Scholar in Residence and

Professor of Network Engineering in the
Department of Computer Science, University of

Colorado Boulder. His interests are in a variety of

internetworking technologies such as network
automation, VoIP, IPv6, SDN/NFV, and next

generation protocols. Currently, his research

focuses on implementation and best practices for
network automation, SDN, and NFV.

Rahil Gandotra is a Ph.D. candidate at the
Interdisciplinary Telecom Program, University of

Colorado Boulder. He received his bachelor’s

degree in Telecommunications Engineering and
has primary research interests in next-generation

networking focusing on software-defined

networking, network functions virtualization, and

energy-efficient networking.

Dewang Gedia is a Ph.D. candidate at the

Interdisciplinary Telecom Program, University of
Colorado Boulder. He received his Bachelor of

Engineering in Electrical, Electronics and

Communications Engineering, master’s degree in
Network Engineering, and has primary research

focus in network functions virtualization and

software-defined networking.

